
1

Get Ready for End-User DevelopmentJanuary 2006

ISSN 1554-303X

MONTAGUE INSTITUTE REVIEW

Within the last few years, some corporate
IT managers have started to ask an intriguing
question: how do we support end-user develop-
ers? These are employees who modify or create
software to become more effective in their pri-
mary jobs as research scientists, financial analysts,
sales, and other business roles.

The phenomenon is not new; it first took off
in the 1980’s with the introduction of microcom-
puters and electronic spreadsheets, but recently it
has reached a tipping point. Instead of being tol-
erated or disparaged by IT staff (who sometimes
call it “shadow computing”), it’s emerging as a
viable development option. In this article, we look
at end-user prototyping and development — what
is it, what are its pros and cons, and what opportu-
nities does it hold for information professionals?

What is end-user development?
End-user development can be thought of as

amateur computing in a business setting. It rarely
shows up in a job description and is often done in
the employee’s spare time — on the lunch break,
at the end of the day, or at home. It requires skill,
creativity, persistence, and sometimes special
tools, but it can deliver quick results and can be
tailored to local requirements. There are several
reasons why end-user development is gaining
visibility and acceptance now:

1. Users are more adept. Today’s users are
more knowledgeable about computer technology.
Many have experimented with macros, databases,
templates, and Web publishing tools. They can get
instant help through Internet discussion groups,
and they have access to a growing variety of easy-
to-use, inexpensive software tools.

2. Users are more vocal. Users are increas-
ingly reluctant to abandon their home grown
solutions even when they’re offered another
alternative with more features. Many have no
qualms about voicing their dissatisfaction with
products that they deem to be overly complex

and inflexible.
3. Limitations of traditional approaches.

When CFOs and CIOs look for reasons why IT
projects fail or get into trouble, lack of user in-
volvement is usually high on the list. For certain
projects where user requirements are hard to
define in advance, traditional development ap-
proaches may look too risky.

4. Adoption of collaborative software tools.
The spread of collaborative software has the effect
of transferring responsibility for security, Web
site maintenance, and other technical functions
from IT staff to business units. When that hap-
pens, IT faces the need for a new kind of support
and training.

5. The need for speed and agility. As more
economic value is based on intangible assets and
the pace of change quickens, it’s necessary to
give knowledge workers the means to customize
their own tools. The traditional alternative — in-
terviewing users to discover their needs and then
creating a product to meet them — is too slow.

The fact is that there are now too many end-
user developers to ignore, they’re too important
to the company, and their numbers are expected
to grow.

Tools and tasks
Unlike most employees, who use only a

small fraction of the capabilities available on
their desktops, end-user developers are adept at
advanced features, such as macros, style sheets,
indexing, export/import, scripting, and Web pub-
lishing. They are also likely to be good at data
conversion — e.g. turning word processed text
into rows and columns or records and fields. Their
favorite tools are spreadsheets, desktop databases
(e.g. Access, Filemaker), scripts, visualization
tools, and “plugins” (small programs that extend
the functionality of commercial products).

Typical examples of end-user development
projects include the following:

The Montague Institute
Review is published by
the Montague Institute

and edited by Jean
Graef.

© Copyright 1998 -
2015 Jean L. Graef. All

rights reserved.

2

• Automating repetitive tasks.
Macros are popular with end-user de-
velopers because they can be created
by “recording” a series of keystrokes
instead of writing commands in an ar-
cane language. The recording process,
available in Microsoft Office, creates a
series of commands that can be assigned
to a button or key combination. Using
Word macros, we created a button that
would automatically reformat a text file
into columns and rows that could then
be imported into a database.

• Personal knowledge manage-
ment. There are many products and Web
sites that can be used to manage Web
browser bookmarks, create a personal
electronic library, or share information
with a team. We have found that creat-
ing a custom database application (a
knowledge base) is the most versatile
way to accomplish these tasks — and
to make the data available to business
systems such as sales and billing.

• Customizing commercial soft-
ware. Many packaged programs have
free or low cost add-ons that extend
their functionality. They’re called pl-
ugins, Web parts, or APIs (application
program interfaces). We customized a
Dreamweaver plugin to create a data
entry form that makes it easier for au-
thors to enter Dublin Core metadata in
Web pages. We used a database plugin
to create scripts that could add, rename,
and delete files on the user’s hard drive.

• Sharing data among applica-
tions. Getting data out of one applica-
tion and into another is a perennial
problem. It’s possible, for example, to
export URLs from one Web browser
to another but not to a database. We
jumpstarted our corporate taxonomy
by exporting index terms from a
page layout program, removing page
numbers, and importing them into our
knowledge base.

• Prototyping new applications.
Instead of writing a thick specifications
document or creating screen mock-ups
in Powerpoint, some business units
are using modeling software to create
working prototypes that look and be-

have like the real thing. The results can
be reviewed and modified by a variety
of stakeholders and can cut months off
development time.

Pros and cons
Like other development strate-

gies, end-user computing has its pros
and cons. It’s an alternative to, not a
replacement for, other methods such
as the traditional systems develop-
ment process (the “waterfall method”),
packaged software, outsourcing, and
open source. As CIO’s and enterprise
executives become more aware of end-
user development’s benefits, they are
coming up with ways to accentuate the
positives and minimize the negatives.

For knowledge workers and
their managers, the pros are speed and
customization. The cons the time taken
from the employee’s “real” job and the
potential for errors.

For the CIO, the pros include
lower project failure rates and rework
costs, less time spent on customization
and maintenance, and higher user satis-
faction. The cons include the difficulty
of reusing code in other applications
and the potential for service disruptions
due to lack of quality assurance.

For the CFO and other enter-
prise executives, pros include lower
overall IT-related costs, greater agility
in responding to change, and higher
customer adoption rates. For example,
suppose a new Web-based application
is projected to save $20 per customer
but only 28% of them use it. If end-user
prototyping can raise the adoption rate
to 80%, the savings are much greater.

End-user development is showing
up now on the executive radar screen
in part due to the proliferation of en-
terprise software targeted to the issue.
At $250,000 or more, these products
require high level approval, and vendors
are becoming adept at providing cost/
benefit data to justify the investment.
Their efforts, as well as those of com-
puter science academics, focus on the
hidden costs and intangible benefits of
software development such as reduced
risk, faster time to market, the costs of
customization and rework, and missed
revenue opportunities.

Differences between end-user and
traditional computing

One reason that end-user devel-
opment is faster and cheaper is that it’s
not encumbered by the practices re-
quired in a mission-critical, enterprise-
wide environment running on expensive
equipment. Instead of writing a formal
statement of requirements, the end-user
developer makes a few sketches on a
notepad and jumps right into program-
ming. Documentation is much simpler,
and there’s not as much pre-release
testing. The developer simply starts
using the application and fixes it as he
goes along. There’s less time spent on
optimizing performance. If the applica-
tion slows down, he simply replaces the
computer with a more powerful model.

“Lite” IT practices
The longer a business unit en-

gages in end-user development and the
more people that use its products, the
greater the need for documentation,
maintenance, and quality assurance.
Otherwise, the time required for train-
ing, bug fixing, and reinventing the
wheel will eat up any productivity
gains. To deal with this issue, we have
gradually evolved a “lite” version of
standard IT practices, such as:

• Documentation. Most develop-
ers don’t like to write documentation,
but it’s well worth it in terms of time
saved in teaching users, fixing bugs and
creating enhancements, and working
with outside contractors. The kind of
documentation that we find most useful
consists of previous software versions,
step-by-step how-to instructions aimed
at nontechnical users, and comments
embedded in the software itself.

• Electronic support system. To
save time, the developer needs at his
fingertips a searchable database of
relevant discussion groups, contact in-
formation for experts, a history of tech
support calls, links to documentation
and how-to articles, and product infor-
mation (date purchased, serial numbers,
warranty information, etc).

• Data clean-up and capture.
end-user developers become sensitized

3

to the need for clean, consistent data
as well as codes that can be used as a
“hook” into other systems. With nearly
every significant new feature, we’ve
had to correct historic data errors and/
or capture new kinds data. For example,
to get records in our knowledge base to
sort correctly by date, we had to con-
vert all publication dates into the MM/
DD/YYYY format. To make it easier
to reconcile accounting data from two
different financial institutions, we had
to capture a certain numeric code that
appears on both statements.

• Technical environment. Most
end-user developers learn the hard way
to isolate their work so that it doesn’t
crash production systems or corrupt
files. We designate certain computers
as test machines. When possible, we
standardize hardware and software to
minimize the need for reprogramming.
If it’s necessary to have different oper-
ating systems, we stick to development
tools that work on all of them.

Since end-user developers by
definition have other jobs to do, it’s
important for them to resist the urge
to add nonessential features and spend
a lot of time tinkering with layouts.
We’ve learned to get feedback from
colleagues early and often and let new
features evolve as our business pro-
cesses require it.

Role of information professionals
So what should IT be doing to

support end-user development? From
our experience, it’s mostly about bet-
ter communication, better information,
and more productive interdisciplinary
partnerships.

Commercial software vendors,
especially those with customizable
products, show the way with special
programs for developers. Most provide
encouragement and sometimes fund-
ing for birds-of-a-feather meetings
and discussion groups, short tutorials,
and a searchable knowledge base of
tips, plugins, demonstrations, sample
code, and frequently asked questions.
A similar service within corporations
that is geared to do-it-yourself rather
than professional programmers, fo-

cused on problems instead of specific
products, and including a section on
application integration, could increase
the productivity of end-user developers
and help leverage their work across the
enterprise.

Prototyping gives end-users a
richer language for communicating
their needs, not only with IT staff but
also with managers, contractors, and
colleagues in other departments. The
ability to see a working model makes
it easier to get funding, reduces the cost
of professional computing services, and
can help streamline information flows
across organizational boundaries. Even
a minimal amount of documentation
and promotion is a big time saver. By
“promotion” we mean participating
in communities of practice, entering
a project description in a corporate
database, or posting sample code on a
Web site.

End-user development is not
new, but because of a better access
to help, easier to use programs, more
comprehensive standards, and a more
competitive business environment, it is
becoming more widespread. Formerly
operating under the corporate radar
screen, it is becoming recognized as a
viable IT strategy. It’s valued by enter-
prise managers for its ability to reduce
software implementation costs, shorten
time to market, and increase adoption
rates. It’s valued by CIO’s as a way to
reduce project delays, budget overruns,
and rework costs, and it’s valued by us-
ers because it’s fast and can be tailored
to local conditions.

To capitalize on these benefits,
knowledge base editors and other infor-
mation professionals have three roles to
play — helping IT create a more open,
flexible, and user-friendly infrastruc-
ture, assisting end-user developers in
adapting proven IT tools and techniques
to their fast-paced and time-constrained
environment, and acting as brokers to
spread developers’ products and exper-
tise thoughout the enterprise.

READING LIST
• Professional end user develop-

ers and software development knowl-
edge. Written by a professor of com-
puter science at the Open University

in the UK, this article discusses how
to support “professional” end user
developers. Drawing on data from two
field studies — one with a financial con-
sultancy and the other with a scientific
research organization — the author de-
scribes their working environment and
discusses the pros and cons of various
strategies to help them. Her preference
is communities of practice.

• Managing software develop-
ment. Powerpoint presentation by Tom
Malone, a professor at the MIT Sloan
School and co-founder of the MIT Cen-
ter for Coordination Science. Concise
overview of six software development
models, including end user develop-
ment and prototyping.

• Making it on their own. CIO
magazine overview of the topic, includ-
ing quotes from business managers and
discussion of various software products
for end user modeling and prototyping.

• “Evaluating the costs and
benefits of end-user development” in
Proceedings of the First Workshop on
End-user Software Development. De-
scribes a cost/benefit model for end user
development that compares perceived
software benefits prior to implementa-
tion with actual benefits and costs after
implementation. Discusses an example
of a content management system in a
university setting.

• The business case justification
for simulation software. This white
paper by iRise Corporation, a vendor
of prototyping software, gives examples
of cost/benefit calculations for a number
of business scenarios. This link takes
you to registration page, but the paper
itself is free.

• Companies look for ideas in all
the wrong places. An MIT professor
argues for software that lets “lead users”
build and modify products as they see
the need for them.

• Understanding information
needs in technical work settings Al-
though not strictly focused on end user
development, Vicki O’Day’s work
provides insights on how profession-
als work and why they might find the
developer role appealing. q

